To whom it may concern!

SOME USEFUL ELECTRIC CIRCUITS
Andrej Tirpak, Bratislava

1. The twin-T Bridge

The twin-T bridge shown irFig. 1 is frequently used as a feedback element in
selective amplifiers, oscillators and for many otherposes. It consists of two T-circuits
connected in parallel. The analysis of this circaiibest carried out by transforming both
T into equivalenfl-connection and connecting them parallel as shoviig. 2, where
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(such transfiguration will be analysed in the detitbelta-star transformation").
Adding the impedances iRig. 2 in parallel we get a new circuit shown kig. 3,
where
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where ) = 1/(RC). If the resistors and capacitorskig. 1 are fixed, the output voltage

is dependent on the frequency of the input voltagee dependence df,.(cw/ w) is
shown inFig. 4. We see, that there is a single frequency
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at which the output voltage is zero. In the viginiff this frequency the circuit behaves

itself as a resonant circuit with relatively highféZtor. The circuit is particularly useful

at low frequencies, where the equivalent RLC-ciroeguest large values bfandC.
Another way to analyse the twin-T bridge is uding method of node voltages.

2. The bridged T

If we remove the capacitorQin the circuit of Fig. 1, we get a new selective
element, commonly called the bridged T-filter, sinow Fig. 5. The analysis similar to
this used in preceding case leads to an equivBlar@nnection (se€ig. 3), with
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The complex transmission coefficient is
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From the expression (11) is obvious, that the dutmltage is real ifw= @« =
= 1/(RC), and at this frequency approaches minimum, wtich
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The dependendd, (& @) is shown irFig. 4 (dashed curve).

3. Delta-star transformation

The passive three terminal network consisting céelimpedancesd,, Zg andZc as
shown inFig. 1a, is said to form a deltaAf — connection. The passive three terminal
network consisting of three impedancés Z, andZ; as shown irFig. 1b, is said to

form a star Y) — connection. The two circuits are equivalenthigir respective input,
output and transfer impedance are equal.
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Assuming open circuit conditions, we get fréigs. 1a, 1b:
Impedance Delta Star
Zg(ZpAt2Z
z., - % = 7,47,
Zo(Zpa+2Z
Z,s - % = 7,+7,
Z,(ZgtZ
Zo - % Z,+7,

where
Z=Zp +Zg+Z:.



Rearranging the above equations gives
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Substracting Eqg. (2) from Eq. (1)
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The reverse transformation of “star network” intelta” is best carried out by using
impedances replaced by admittances, and shortitagiguone pair of corresponding
terminals in each network at a time. Thus friéigs. 1a, 1b we get:

Short- circuited
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Y =Y, +Y, +Ys.
Solving for “delta” impedances:
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in terms of impedances

Za=Zg+2Z,+ Zzzl , (11)
2

Zo=Z,+Z,+ Zézz , (12)
3

Zc=2Z,+Z3+ 2;23 : (13)
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